

Lab 11.2.1a Configuring Standard Access Lists – Instructor Version 2500

Router Designation	Router Name	FA0/0 Address	Subnet mask	Enable Secret password	Enable/VTY/Console passwords
Router 1	GAD	192.168.14.1	255.255.255.0	class	cisco

Objective

- Configure, and apply a standard ACL to permit or deny specific traffic.
- Test the ACL to determine if the desired results were achieved.

Background/Preparation

Cable a network similar to the one in the diagram. Any router that meets the interface requirements displayed on the above diagram, such as 800, 1600, 1700, 2500, 2600 routers, or a combination, may be used. Please refer to the chart at the end of the lab to correctly identify the interface identifiers to be used based on the equipment in the lab. The configuration output used in this lab is produced from 1721 series routers. Any other router used may produce a slightly different output. The following steps are intended to be executed on each router unless specifically instructed otherwise.

Start a HyperTerminal session as performed in the Establishing a HyperTerminal session lab.

Note: Go to the erase and reload instructions at the end of this lab. Perform those steps on the router in this lab assignment before continuing.

Step 1 Configure the hostname and passwords on the Gadsden router

- a. On the Gadsden router, enter the global configuration mode and configure the hostname as shown in the chart. Then configure the console, virtual terminal and enable passwords. Configure the **Fast**Ethernet interface on the router according to the chart.

Step 2 Configure the hosts on the Ethernet segment

- a. Host 1

IP address	192.168.14.2
Subnet mask	255.255.255.0
Default gateway	192.168.14.1

- b. Host 2

IP address	192.168.14.3
Subnet mask	255.255.255.0
Default gateway	192.168.14.1

Step 3 Save the configuration information from the privileged EXEC command mode

```
GAD#copy running-config startup-config
```

Step 4 Confirm connectivity by pinging the default gateway from both hosts

- a. If the pings are not successful, correct the configuration and repeat until they are successful.

Step 5 Prevent access to the Ethernet interface from the hosts

- a. Create an access list that will prevent access to **Fast**Ethernet 0 from the 192.168.14.0 network.
- b. At the router configuration prompt type the following command:

```
GAD(config)#access-list 1 deny 192.168.14.0  0.0.0.255
GAD(config)#access-list 1 permit any
```

- c. Why is the second statement needed? There is an implicit deny any any at the end of all ACLs.

Step 6 Ping the router from the hosts

- a. Were these pings successful? Yes
- b. Why or why not? The ACLs were not applied to the interface yet.

Step 7 Apply the Access list to the interface

- a. At the **Fast**Ethernet 0 interface mode prompt type the following:

```
GAD(config-if)#ip access-group 1 in
```

Step 8 Ping the router from the hosts

- a. Were these pings successful? No
- b. Why or why not? _____

Step 9 Create a new access list

- a. Now create an access list that will not allow the even numbered hosts to ping but permit the odd numbered hosts to ping.
- b. What will that access list look like? Finish this command with an appropriate comparison IP address (aaa.aaa.aaa.aaa) and wildcard mask (www.wwww.wwww.wwww):

```
access-list 2 permit aaa.aaa.aaa.aaa www.wwww.wwww.wwww
access-list 2 permit 192.168.14.1 0.0.0.254
```

- c. Why was it not necessary to have the `permit any` statement at the end this time?

We want to deny all other IP addresses except for the odd addresses from 192.168.14.0 network.

Step 10 Apply access list to the proper router interface

- a. First remove the old access list application by typing `no ip access-group 1 in` at the interface configuration mode.
- b. Apply the new access list by typing `ip access-group 2 in`

Step 11 Ping the router from each hosts

- a. Was the ping from host 1 successful? No
- b. Why or why not? It has an even address and not allowed by ACL 2.
- c. Was the ping from host 2 successful? Yes
- d. Why or why not? It has an odd address and allowed by the ACL 2.

Upon completion of the previous steps, logoff by typing `exit`. Turn the router off.

Erasing and reloading the router

Enter into the privileged EXEC mode by typing **enable**.

Router>**enable**

If prompted for a password, enter **class**. If **class** does not work, ask the instructor for assistance.

At the privileged EXEC mode, enter the command **erase startup-config**.

Router#**erase startup-config**

The responding line prompt will be:

```
Erasing the nvram filesystem will remove all files! Continue?  
[confirm]
```

Press **Enter** to confirm.

The response should be:

```
Erase of nvram: complete
```

Now at the privileged EXEC mode, enter the command **reload**.

Router#**reload**

The responding line prompt will be:

```
System configuration has been modified. Save? [yes/no] :
```

Type **n** and then press **Enter**.

The responding line prompt will be:

```
Proceed with reload? [confirm]
```

Press **Enter** to confirm.

In the first line of the response will be:

```
Reload requested by console.
```

After the router has reloaded the line prompt will be:

```
Would you like to enter the initial configuration dialog? [yes/no] :
```

Type **n** and then press **Enter**.

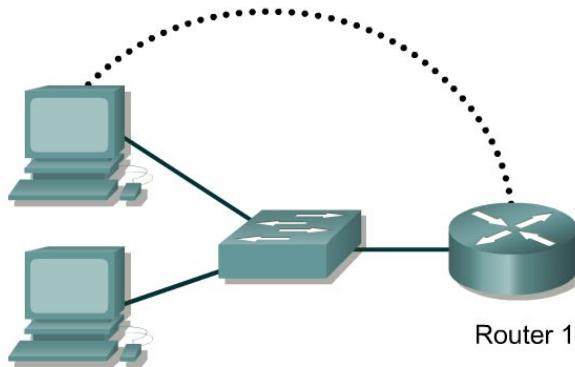
The responding line prompt will be:

```
Press RETURN to get started!
```

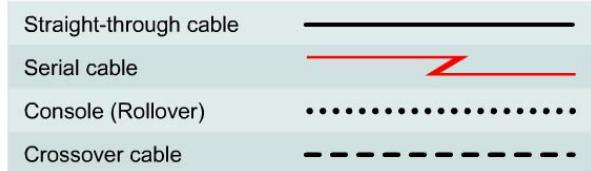
Press **Enter**.

The router is ready for the assigned lab to be performed.

Router Interface Summary					
Router Model	Ethernet Interface #1	Ethernet Interface #2	Serial Interface #1	Serial Interface #2	Interface #5
800 (806)	Ethernet 0 (E0)	Ethernet 1 (E1)			
1600	Ethernet 0 (E0)	Ethernet 1 (E1)	Serial 0 (S0)	Serial 1 (S1)	
1700	FastEthernet 0 (FA0)	FastEthernet 1 (FA1)	Serial 0 (S0)	Serial 1 (S1)	
2500	Ethernet 0 (E0)	Ethernet 1 (E1)	Serial 0 (S0)	Serial 1 (S1)	
2600	FastEthernet 0/0 (FA0/0)	FastEthernet 0/1 (FA0/1)	Serial 0/0 (S0/0)	Serial 0/1 (S0/1)	


In order to find out exactly how the router is configured, look at the interfaces. This will identify the type of router as well as how many interfaces the router has. There is no way to effectively list all of the combinations of configurations for each router class. What is provided are the identifiers for the possible combinations of interfaces in the device. This interface chart does not include any other type of interface even though a specific router may contain one. An example of this might be an ISDN BRI interface. The string in parenthesis is the legal abbreviation that can be used in IOS command to represent the interface.

GAD Output


```
GAD#show running-config
version 12.0
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname GAD
!
ip subnet-zero
!
ip audit notify log
ip audit po max-events 100
!
interface Ethernet0
  ip address 192.168.14.1 255.255.255.0
  ip access-group 2 in
  no ip directed-broadcast
!
interface Serial0
  no ip address
  no ip directed-broadcast
  no ip mroute-cache
  shutdown
  no fair-queue
!
interface Serial1
  no ip address
  no ip directed-broadcast
  shutdown
!
ip classless
no ip http server
!
access-list 1 deny 192.168.14.0 0.0.0.255
access-list 1 permit any

access-list 2 permit 192.168.14.1 0.0.0.254
!
line con 0
  transport input none
line aux 0
line vty 0 4
!
end
```

Lab 11.2.1a Configuring Standard Access Lists – Instructor Version 2600

Router Designation	Router Name	FA0/0 Address	Subnet mask	Enable Secret password	Enable/VTY/Console passwords
Router 1	GAD	192.168.14.1	255.255.255.0	class	cisco

Objective

- Configure, and apply a standard ACL to permit or deny specific traffic.
- Test the ACL to determine if the desired results were achieved.

Background/Preparation

Cable a network similar to the one in the diagram. Any router that meets the interface requirements displayed on the above diagram, such as 800, 1600, 1700, 2500, 2600 routers, or a combination, may be used. Please refer to the chart at the end of the lab to correctly identify the interface identifiers to be used based on the equipment in the lab. The configuration output used in this lab is produced from 1721 series routers. Any other router used may produce a slightly different output. The following steps are intended to be executed on each router unless specifically instructed otherwise.

Start a HyperTerminal session as performed in the Establishing a HyperTerminal session lab.

Note: Go to the erase and reload instructions at the end of this lab. Perform those steps on the router in this lab assignment before continuing.

Step 1 Configure the hostname and passwords on the Gadsden router

- a. On the Gadsden router, enter the global configuration mode and configure the hostname as shown in the chart. Then configure the console, virtual terminal and enable passwords. Configure the FastEthernet interface on the router according to the chart.

Step 2 Configure the hosts on the Ethernet segment

- a. Host 1

IP address	192.168.14.2
Subnet mask	255.255.255.0
Default gateway	192.168.14.1

- b. Host 2

IP address	192.168.14.3
Subnet mask	255.255.255.0
Default gateway	192.168.14.1

Step 3 Save the configuration information from the privileged EXEC command mode

```
GAD#copy running-config startup-config
```

Step 4 Confirm connectivity by pinging the default gateway from both hosts

- a. If the pings are not successful, correct the configuration and repeat until they are successful.

Step 5 Prevent access to the Ethernet interface from the hosts

- a. Create an access list that will prevent access to FastEthernet 0 from the 192.168.14.0 network.
- b. At the router configuration prompt type the following command:

```
GAD(config)#access-list 1 deny 192.168.14.0  0.0.0.255
GAD(config)#access-list 1 permit any
```

- c. Why is the second statement needed? [There is an implicit deny any any at the end of all ACLs.](#)

Step 6 Ping the router from the hosts

- a. Were these pings successful? [Yes](#)
- b. Why or why not? [The ACLs were not applied to the interface yet.](#)

Step 7 Apply the Access list to the interface

- a. At the FastEthernet 0 interface mode prompt type the following:

```
GAD(config-if)#ip access-group 1 in
```

Step 8 Ping the router from the hosts

- a. Were these pings successful? [No](#)
- b. Why or why not? _____

Step 9 Create a new access list

- a. Now create an access list that will not allow the even numbered hosts to ping but permit the odd numbered hosts to ping.
- b. What will that access list look like? Finish this command with an appropriate comparison IP address (aaa.aaa.aaa.aaa) and wildcard mask (www.wwww.wwww.wwww):

```
access-list 2 permit aaa.aaa.aaa.aaa  www.wwww.wwww.wwww
```

```
access-list 2 permit 192.168.14.1 0.0.0.254
```

- c. Why was it not necessary to have the `permit any` statement at the end this time?

We want to deny all other IP addresses except for the odd addresses from 192.168.14.0 network.

Step 10 Apply access list to the proper router interface

- a. First remove the old access list application by typing `no ip access-group 1 in` at the interface configuration mode.
- b. Apply the new access list by typing `ip access-group 2 in`

Step 11 Ping the router from each hosts

- a. Was the ping from host 1 successful? No
- b. Why or why not? It has an even address and not allowed by ACL 2.
- c. Was the ping from host 2 successful? Yes
- d. Why or why not? It has an odd address and allowed by the ACL 2.

Upon completion of the previous steps, logoff by typing `exit`. Turn the router off.

Erasing and reloading the router

Enter into the privileged EXEC mode by typing **enable**.

Router>**enable**

If prompted for a password, enter **class**. If **class** does not work, ask the instructor for assistance.

At the privileged EXEC mode, enter the command **erase startup-config**.

Router#**erase startup-config**

The responding line prompt will be:

```
Erasing the nvram filesystem will remove all files! Continue?  
[confirm]
```

Press **Enter** to confirm.

The response should be:

```
Erase of nvram: complete
```

Now at the privileged EXEC mode, enter the command **reload**.

Router#**reload**

The responding line prompt will be:

```
System configuration has been modified. Save? [yes/no] :
```

Type **n** and then press **Enter**.

The responding line prompt will be:

```
Proceed with reload? [confirm]
```

Press **Enter** to confirm.

In the first line of the response will be:

```
Reload requested by console.
```

After the router has reloaded the line prompt will be:

```
Would you like to enter the initial configuration dialog? [yes/no] :
```

Type **n** and then press **Enter**.

The responding line prompt will be:

```
Press RETURN to get started!
```

Press **Enter**.

The router is ready for the assigned lab to be performed.

Router Interface Summary					
Router Model	Ethernet Interface #1	Ethernet Interface #2	Serial Interface #1	Serial Interface #2	Interface #5
800 (806)	Ethernet 0 (E0)	Ethernet 1 (E1)			
1600	Ethernet 0 (E0)	Ethernet 1 (E1)	Serial 0 (S0)	Serial 1 (S1)	
1700	FastEthernet 0 (FA0)	FastEthernet 1 (FA1)	Serial 0 (S0)	Serial 1 (S1)	
2500	Ethernet 0 (E0)	Ethernet 1 (E1)	Serial 0 (S0)	Serial 1 (S1)	
2600	FastEthernet 0/0 (FA0/0)	FastEthernet 0/1 (FA0/1)	Serial 0/0 (S0/0)	Serial 0/1 (S0/1)	

In order to find out exactly how the router is configured, look at the interfaces. This will identify the type of router as well as how many interfaces the router has. There is no way to effectively list all of the combinations of configurations for each router class. What is provided are the identifiers for the possible combinations of interfaces in the device. This interface chart does not include any other type of interface even though a specific router may contain one. An example of this might be an ISDN BRI interface. The string in parenthesis is the legal abbreviation that can be used in IOS command to represent the interface.

GAD Output

```
GAD#show running-config
version 12.0
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname GAD
!
ip subnet-zero
!
ip audit notify log
ip audit po max-events 100
!
interface FastEthernet0/0
  ip address 192.168.14.1 255.255.255.0
  ip access-group 2 in
  no ip directed-broadcast
!
interface Serial0/0
  no ip address
  no ip directed-broadcast
  no ip mroute-cache
  shutdown
  no fair-queue
!
interface Serial0/1
  no ip address
  no ip directed-broadcast
  shutdown
!
ip classless
no ip http server
!
access-list 1 deny 192.168.14.0 0.0.0.255
access-list 1 permit any

access-list 2 permit 192.168.14.1 0.0.0.254
!
line con 0
  transport input none
line aux 0
line vty 0 4
!
end
```